
ActiveRDF: Object-Oriented Semantic Web Programming

Eyal Oren
eyal.oren@deri.org

Renaud Delbru
renaud.delbru@deri.org

Sebastian Gerke
sebastian.gerke@deri.org

Armin Haller
armin.haller@deri.org

Stefan Decker
stefan.decker@deri.org

Digital Enterprise Research Institute
National University of Ireland, Galway

Galway, Ireland

ABSTRACT
Object-oriented programming is the current mainstream pro-
gramming paradigm but existing RDF APIs are mostly triple-
oriented. Traditional techniques for bridging a similar gap
between relational databases and object-oriented programs
cannot be applied directly given the different nature of Se-
mantic Web data, for example in the semantics of class mem-
bership, inheritance relations, and object conformance to
schemas.

We present ActiveRDF, an object-oriented API for man-
aging RDF data that offers full manipulation and querying
of RDF data, does not rely on a schema and fully conforms
to RDF(S) semantics. ActiveRDF can be used with dif-
ferent RDF data stores: adapters have been implemented
to generic SPARQL endpoints, Sesame, Jena, Redland and
YARS and new adapters can be added easily. In addition,
integration with the popular Ruby on Rails framework en-
ables rapid development of Semantic Web applications.

Categories and Subject Descriptors
D.2.12 [Software]: Software Engineering; Design Tools and
Techniques[Object-oriented design methods]

General Terms
Languages, Design

Keywords
Semantic Web, RDF(S), object-oriented programming, script-
ing languages, Ruby on Rails

1. INTRODUCTION
The Semantic Web is a web of data that can be processed

by machines, enabling them to interpret, combine and use
Web data [4, p. 191]. RDF1 is the foundational representa-
tion model of the Semantic Web. Statements in RDF are
triples consisting of a subject, a predicate, and an object
and assert that a subject has a property with some value.

1http://w3.org/RDF/

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

Developing Semantic Web applications requires handling
the RDF data model in a programming language. Although
a majority of current software is developed in the object-
oriented paradigm2, programming in RDF is currently triple-
based. For relational databases, object-oriented APIs have
been long available: frameworks such as Hibernate [2] or
ADO.Net provide an automatic mapping from relational
databases to object-oriented programming.

Partially inspired by such object-relational mappings, the
development of an object-oriented RDF API has been sug-
gested several times [15, 16]. Such an API would map
RDF Schema3 (RDFS) classes to programming classes, RDF
resources to programming objects and RDF predicates to
methods on those objects, containing Person.firstName in-
stead of Resource.getProperty(http://xmlns.com/foaf/

0.1/firstName).
In this paper we present an architecture and implementa-

tion of such an object-oriented RDF API. In section 2 we ex-
amine the differences between the object-oriented paradigm
and the RDF model and explain why techniques used in
object-relational mapping approaches are not sufficient. We
present our solution architecture in section 3 and analyse the
suitability of scripting languages for our mapping architec-
ture. Section 4 introduces our implementation ActiveRDF,
while section 5 illustrates the integration of ActiveRDF with
the web application framework Ruby on Rails. We evaluate
our work in section 6, discuss related approaches in section
7 and conclude in section 8.

2. PROBLEM STATEMENT
The conceptual model and semantics of RDF Schema dif-

fer substantially from the object-oriented paradigm, more
so than the relational paradigm does. In this section we ex-
amine these differences and explain why existing mapping
approaches do not suffice for Semantic Web data. Although
the exact meaning of “object-oriented” varies [1], we will
consider typical object-oriented features and focus mostly
on Java.

2.1 Object–oriented versus RDF
The semantics of classes and instances in RDF Schema is

open-world and description logics-based while object-oriented
type systems are closed-world and constraint-based [10]. This

2http://www.tiobe.com/tpci.htm
3http://www.w3.org/TR/rdf-schema/

http://w3.org/RDF/
http://xmlns.com/foaf/0.1/firstName
http://xmlns.com/foaf/0.1/firstName
http://www.tiobe.com/tpci.htm
http://www.w3.org/TR/rdf-schema/

fundamental semantic difference causes six mismatches:

1. class membership: in popular object-oriented languages
such as Java or C# an object is member of exactly one
class: its membership is fixed and is defined during the
object instantiation. In RDF Schema, a resource can
belong to multiple classes: its membership is not fixed
but defined by its rdf:type and the properties that
belong to the resource.

2. class hierarchy: in popular object-oriented type sys-
tems, such as in Java or C#, classes can inherit from
at most one superclass, while in RDF Schema classes
can inherit from multiple superclasses (including in-
heritance cycles).

3. attribute vs. property: in the object-oriented model,
attributes are defined locally inside their class, can be
used only by instances of that class, and generally have
single-typed values. In contrast, RDF properties are
stand-alone entities that can be used by any resource
of any class and that can have values of different types.

4. structural inheritance: in object-oriented programming,
objects inherit their attributes from their parent classes.
In RDF Schema, since properties do not belong to a
class, they are not inherited. Instead, property do-
mains are propagated, but given their specific mean-
ing indicating the class membership of resources using
that property, domains propagate into the upwards di-
rection of the class hierarchy.

5. object conformance: in most object-oriented languages,
the structure of instances must exactly follow the defi-
nition of their classes, whereas in RDF Schema, a class
definition is not exhaustive and does not constrain the
structure of its instances: any RDF resource can use
any property.

6. flexibility: object-oriented systems usually do not al-
low class definitions to evolve during runtime. In con-
trast, RDF is designed for integration of heterogeneous
data with varying structure from varying sources, where
both schema and data evolve during runtime.

2.2 Existing approaches
For relational databases several object–relational map-

pings exist, such as Java Data Objects and Hibernate for
Java, ADO.Net for C# and ActiveRecord for Ruby. Most
of these mappings follow the Active Domain Object or Ac-
tive Record pattern [8, p. 160] which abstracts the database,
simplifies data access and ensures data consistency.

Although the mapping frameworks differ in how they solve
the impedance mismatch between the relational model, which
is normalised for fast data retrieval, and the object-oriented
model, which captures real-world objects as closely as pos-
sible, the general mapping is the same in all frameworks.

Tables are mapped to classes; table columns are mapped
as attributes in the class, except for foreign keys which are
mapped to object relationships; and every tuple in the rela-
tional model is mapped to an object. Intersection tables,
which are introduced in the relational model to capture
many-to-many relations, are mapped to object relationships
(is-a, has-a relations).

To apply the general mapping methodology to RDF data,
adjustments are required to address the six identified mis-
matches listed above. Existing approaches do not address
these mismatches since they do not occur in relational data:

1. class membership: in the relational model, every tu-
ple belongs to exactly one table, which maps without
problem to the object-oriented requirement that every
object must be member of exactly one class.

2. class hierarchy: a non-issue since no hierarchy of tables
is allowed in the relational model.

3. object attributes: columns are the relational counter-
part of object attributes, and map without problems
to object attributes: columns are defined locally to a
table, can be used only by tuples of that tables and
have single-typed values.

4. structural inheritance: a non-issue since inheritance
does not exist in the relational model.

5. object conformance: in the relational model each tu-
ple must conform strictly to the table definition in the
schema, which maps without problem to the object-
oriented notion of object conformance. Although ta-
bles can have optional columns, a tuple cannot contain
other columns than specified in the table definition.

6. flexibility: database systems are typically closed sys-
tems whose schema definitions do not change dynami-
cally at runtime, rendering the level of flexibility needed
for RDF data again a non-issue.

3. SOLUTION
The previous section discussed the mismatches between

the object-oriented paradigm and RDF data and explained
why existing object-relational mappings do not address these
mismatches. To resolve these issues one can either impose
restrictions on the usage of RDF or remove some restrictions
in the object-oriented language.

We take the second approach: our solution is based on
object-oriented scripting languages, where the mismatch be-
tween the object-oriented paradigm and RDF is smaller than
with compiled object-oriented languages.

This section introduces scripting languages, explains their
suitability and introduces our architecture for an object-
oriented RDF API.

3.1 Suitability of scripting languages
Dynamic, general-purpose scripting languages such as Perl,

Python, and Ruby are typically interpreted, use dynamic
typing, have strong meta-programming capabilities (which
enable the programmer to alter the semantics of the lan-
guage) and allow runtime introspection [13]. Through dy-
namic typing and meta-programming, scripting languages
enable us to implement a domain-specific language for RDF(S)
data and alleviate the discussed mismatches as follows:

1. class membership: the dynamic typing of scripting lan-
guages does not require object types to be defined stat-
ically, these are rather determined at runtime by the
capabilities of the object. Dynamic typing maps well
to RDF(S) class membership which can also change

dynamically. Although objects in most scripting lan-
guages can have only one type at a time, we can over-
ride that behaviour using meta-programming.

2. class hierarchy: although most scripting languages do
not support multiple inheritance, this behaviour can
usually be changed through meta-programming.

3. attribute vs. property: the meta-programming facil-
ity of scripting languages enables the addition of at-
tributes to objects dynamically whereas their dynamic
typing enables the attributes to have values of multiple
types.

4. structural inheritance: by itself, the lack of structural
inheritance in RDF(S) does not form a problem for
an object-oriented mapping. However, as we will de-
scribe in Sect. 4.1, the lack of structural inheritance
limits the possibility of resolving ambiguous property
shorthands, e.g. Person.name.

5. object conformance: scripting languages typically do
not require objects to strictly conform to their class
definitions but instead allow objects to deviate from
their classes. For example, it is often possible to spec-
ify a different behaviour (method implementation) for
several objects of the same class.

6. flexibility: since scripting languages are interpreted
and do not rely on strict and prior-defined classes, they
are well-suited for flexible environments in which both
data and schema can evolve. The introspection allows
programs to investigate the schemas and domain vo-
cabulary that are available during program execution.

In summary, dynamic scripting languages offer the prop-
erties required for a virtual and flexible API for RDF(S)
data. Our arguments apply equally well to any dynamic
Turing-complete language with these capabilities.

3.2 Architecture
The general principle of our architecture is to represent

RDF resources through transparent proxy objects. Each
proxy object represents one RDF resource but does not con-
tain any state. All methods (manipulations) on the proxy
object are translated into (read or write) queries related to
the proxy’s RDF resource. Transparent proxy objects are
simpler to implement than rich objects that copy the state
and data of an RDF resource. Since rich objects often of-
fer better performance, caching data in such rich objects
can be implemented as an extension but requires a cache-
management policy.

Our architecture consists of four layers, as shown in Fig. 1,
that incrementally abstract RDF data into objects.

3.2.1 Object manager
The object manager is the library entry point and provides

all the mapping functionality. It provides the domain model
with all its manipulation and generic search methods. It
is not a generated API (hence the name virtual), but uses
meta-programming to catch unhandled method calls (such
as john.firstName) and respond to them.

The object manager maps RDF data to objects and data
manipulation to methods. For example, when the applica-
tion calls a find method or when a new person is created,

adapter(s)

federation

object manager

query engine

application

data source(s)

ac
ce

ss
in

g
da

ta

ex
po

sin
g

da
ta

Figure 1: ActiveRDF architecture

the mapping layer translates this operation into a query on
the data source. The object manager also creates object-
oriented classes from RDF Schema classes if schema infor-
mation is available.

Developers can augment the object-oriented classes with
custom methods to provide additional behaviour. Such meth-
ods can be overridden in subclasses to define specific be-
haviour: for example, a toString method might return dif-
ferent results for different kinds of objects. In typical object-
oriented systems, the definition in the most specific class is
used when multiple method definitions are given.

However, given the multiple inheritance in RDF Schema
and the possibility of multiple membership, an additional
resolution strategy must be used for methods that are de-
fined multiple times, in classes that have no inheritance re-
lation to each other. Possible solutions are to execute the
first-found method definition, to select the most applicable
method through a more refined distance-measure, to let the
developer explicitly indicate the definition to use, or to raise
an error.

3.2.2 Query engine
The query engine provides an abstract query API that is

independent of a specific data source and query language. It
is used by the object manager to construct queries for each
object manipulation.

3.2.3 Federation manager
The federation manager manages the collection of avail-

able data sources, distributes the queries over some or all
of these sources and collects their results. The federation
manager should, when querying multiple data sources, con-
solidate the results [7]: similar objects that are identified
differently in the different data sources should be merged
before the results are returned.

3.2.4 Adapters
Adapters provide access to a specific RDF data-store by

translating generic RDF operations to a store-specific API.
Such RDF data-store specific adapters are necessary, be-
cause of the absence of a general standardised query lan-
guage which provides create, read, update, and delete ac-
cess.

As such adapters are responsible for translating and exe-

cuting queries from the federation manager into a query lan-
guage supported by their data source. Each adapter must
implement a simple API, which allows new adapters to be
added easily.

Adapters do not necessarily wrap RDF data sources, they
could also wrap “legacy” sources such as desktop applica-
tion data (as in the Aperture architecture [14]) or relational
databases (as in the D2R system [5]), as long as they expose
their query results as RDF.

4. IMPLEMENTATION
We have implemented the presented architecture in our

Ruby library ActiveRDF, which provides a virtual API for
managing RDF data in an object-oriented manner. We have
reported on an initial implementation earlier [11]. Since
then, ActiveRDF was completely re-implemented according
to the architecture described above. ActiveRDF is currently
implemented in around 600 lines of code; the adapters are
written in on average 160 lines of code.

4.1 Object manager
The object manager offers a virtual API to manipulate

RDF. This virtual API can be divided into three parts: map-
ping RDF(S) resources into objects, instance-level methods
for manipulating these resources, and class-levels methods
for searching resources.

In ActiveRDF every object can be member of many classes.
Since Ruby does not allow such multiple membership, we
override the built-in Ruby behaviour. All built-in methods
that use the class of an object are overridden to rely on the
rdf:type(s) in the data source.

Apart from the virtual API, developers can augment the
domain model with custom methods. As discussed in section
3.2.1, a search strategy is needed to resolve multiple (clash-
ing) method definitions in classes: as a pragmatic solution
our current implementation uses the first-found definition.

4.1.1 Mapping resources
The object manager maps all RDF(S) classes to Ruby

classes, all RDF resources to Ruby objects, and all RDF
properties to attributes on the Ruby objects. All RDF
resources are by default created as Ruby objects of class
RDFS::Resource.

Domain-specific methods such as john.age or john.name
are not generated but provided virtually: the object man-
ager catches their invocation and translates the method call
into a query. Without the object manager’s interference,
Ruby would throw a MethodNotFound error. Such meta-
programming caters for flexibility: as we do not generate
the API but “pretend” it based on the data available at
runtime, we do not need to recompile or regenerate the API
when the data changes.

To prevent clashes between similarly-named classes in dif-
ferent libraries we map the RDF namespaces onto the names-
pace mechanism provided by Ruby. Listing 1 shows how to
register a namespace abbreviation for the FOAF namespace
and how to create an instance of FOAF::Person.

Listing 1: Mapping resources� �
Namespace.register(:foaf, ’http://xmlns.com/foaf/0.1’)
ObjectManager.construct classes
john = FOAF::Person.new(’http://example.org/foaf.rdf#me’)� �

4.1.2 Manipulating resources
Resources can be manipulated depending on the data ac-

cess permissions and capabilities of the data source. List-
ing 2 shows how to use standard Ruby closure to traverse
John’s friends and print the name of each of them.

Listing 2: Traversing using Ruby closure� �
john.knows.each do |friend|

puts friend.name
end� �
In this example, the object manager transparently catches

the method calls john.knows and friend.name and trans-
lates each into a query. Part of this translation is determin-
ing the full URI of the predicate for “knows” and “name”,
which is straightforward with a unique local part, but am-
biguous when different predicates have the same local parts.
As discussed in Sect. 2, the schema definition cannot be
used to determine which predicate might apply to a cer-
tain resource, since the schema does not constrain usage
of predicates to classes. For example, every resource can
use foaf:name, the resource then simply becomes of type
foaf:Person. One might be tempted to use the schema
definition and class hierarchy to limit this ambiguity and
to find the most relevant property for a resource, but the
RDF(S) notion of “domain” does not cater for this.

Developers can still use an ambiguous but convenient short-
hand, as in Listing 3, but are not guaranteed the desired
results since the first matching predicate will be used. In-
stead, they can explicitly specify the predicate through its
namespace, as in Listing 4.

Listing 3: Ambiguous property accessors� �
john.knows.each do |friend|

puts friend.name
end� �

Listing 4: Unambiguous property accessors� �
john.foaf::knows.each do |friend|

puts friend.foaf::name
end� �
Each such resource manipulation is translated into a query.

Invocations that change attribute values are handled simi-
larly, but generate update queries instead of read queries.

4.1.3 Searching resources
If the URI of the resource is known to the application

programmer, a proxy object is created as shown in the list-
ing above. If the URI is not known, ActiveRDF offers two
ways to search for it: with “dynamic finders” in the object
manager, or through the Query API.

Listing 5 demonstrates the dynamic finders. The first
shows a search returning all resources named “John”, the
second all thirty-year-olds named “John”. These finders al-
low to locate a resource through one or more conjunctive
clauses. If the developer requires more complicated queries
the Query API can be used.

Listing 5: Dynamic finders� �
FOAF::Person.find by name(’John’)
FOAF::Person.find by name and age(’John’,30)� �

4.2 Query Engine
The current implementation of the query engine supports

conjunctive datalog with select, distinct, and arbitrary where

clauses. Additionally it allows (for adapters that support
this) counting query results, specifying the limit and off-
set of the query results and full-text keyword search. The
query engine is used internally by the object manager for all
manipulations. Further, it can be used by the application
developer to execute complex queries on the data sources.

Listing 6 shows some typical queries. The first query
counts the number of distinct predicates used in the dataset,
the second one returns all distinct foaf:names of the earlier
defined John, and the third one finds all resources mention-
ing “apple”.

Listing 6: Usage of Query API� �
Query.new.count.distinct(:p).where(:s, :p, :o)
Query.new.distinct(:o).where(john, FOAF::name, :o)
Query.new.distinct(:s).where(:s, :keyword, ’apple’)� �

4.3 Federation Manager
The federation manager distributes queries amongst all

registered data sources and aggregates their results. In the
current implementation query distribution is achieved by
simply querying all data sources sequentially; query result
aggregation is achieved through a union of individual results
(using either set union for distinct queries or bag union for
non-distinct queries). We have not yet implemented a con-
solidation strategy in the federation manager, but we do
offer an extension point for later addition of such function-
ality.

4.4 Adapters
Adapters wrap a data source into a standard interface,

which includes methods such as query, add and delete. To
translate the abstract query into the query language of the
data source, adapters can either reuse existing translators
or implement their own translation. To fully conform to
RDF(S) semantics, ActiveRDF relies on the data sources to
do so as well; data from sources without RDFS inferencing
can still be used inside ActiveRDF, but the mapping will
then not fully conform to RDF(S) semantics.

We have implemented adapters for generic SPARQL end-
points, to the RDF data stores Sesame [6], Jena [17], YARS
[9], and Redland [3]. We have also implemented proof-of-
concept adapters to desktop application data such as the
Evolution email address book (exposed as FOAF data).

We have further developed rdflite, a simple and light-
weight RDF store (and adapter) based on SQLite4 with
support for full-text search. We distribute rdflite as an
adapter for ActiveRDF to enable simple prototyping with-
out installing a fully-fledged RDF store.

5. SEMANTIC WEB ON RAILS
Ruby on Rails is a rapid application development frame-

work for web applications, following the model–view–con-
troller paradigm. Developers are presented with default
models, views, and controllers and can adjust these to their
domain. The model is usually provided by an existing data-
base, the controller implements the control-flow in Ruby and
the view is specified using HTML and embedded Ruby code.

Ruby on Rails has two main strengths: on the one hand it
provides default application logic for the generic parts of web
applications and several helper methods for data manipula-
tion and JavaScript effects, alleviating developers from these
4http://www.sqlite.org

tasks. On the other hand, since Ruby on Rails is targeted to-
wards web applications that operate on relational databases,
it integrates the business logic with the domain data using
the ActiveRecord object-relational mapping: database ta-
bles serve as domain models and database tuples become
Ruby instances.

We have designed ActiveRDF such that it can serve as a
data layer in Ruby on Rails, replacing or augmenting the
default ActiveRecord layer. As such, it provides a solution
for rapid development of Semantic Web applications, lever-
aging the large and vibrant community of Ruby on Rails
developers with their extensions and plug-ins. We have de-
veloped several web applications using ActiveRDF and Ruby
on Rails; we will briefly describe two of them:

5.1 Semantic Conference Schedule
We have developed a simple conference schedule5 purely

built on Ruby on Rails and ActiveRDF. Originally devel-
oped for the International Semantic Web Conference 2006
this application operates on the conference metadata to show
participants an overview of the conference schedule with de-
tails about each presentation and participant. The applica-
tion operates strictly on RDF metadata using vocabularies
such as eswc, iswc, swrc, foaf and ical.

Using ActiveRDF the integration of Rails with RDF data
was straightforward and the development effort was min-
imal. Most development time was actually dedicated to
support different browsers for the views. The models itself
are automatically provided as virtual models, the controller
(with all application logic) contains around 250 lines of code,
and the views contain around 200 lines of HTML, Ruby and
JavaScript code.

5.2 Faceted Metadata Browser
To allow navigation in arbitrary RDF datasets we have

developed a faceted metadata browser6. Faceted browsing is
a data exploration technique for large datasets. BrowseRDF
extends this technique for complete graph-based data and
adds algorithms to rank facets automatically based on facet
entropy [12].

Again, using ActiveRDF the development effort was min-
imal once the formal model and the algorithms had been
developed: the models are automatically provided, the con-
troller contains around 300 lines of code, and the views con-
tain around 250 lines of HTML, Ruby and JavaScript code.

BrowseRDF currently uses the rdflite data store, but the
data source abstraction in ActiveRDF allows us to easily
switch to a more scalable RDF store such as YARS or Sesame
for larger datasets.

6. EVALUATION
We evaluate ActiveRDF in two ways: a quantitative eval-

uation to indicate possible performance overhead of our li-
brary and a qualitative evaluation to indicate the possible
ease-of-use and increased productivity in software develop-
ment. For practical reasons we have not measured pro-
ductivity increase directly (as e.g. task completion speed
of several similarly qualified programmers with and with-
out ActiveRDF), instead an indication is given through the

5http://schedule.semanticweb.org
6http://www.browserdf.org

http://www.sqlite.org
http://schedule.semanticweb.org
http://www.browserdf.org

� �
0 SELECT ?homepage WHERE { ?person <http://xmlns.com/foaf/0.1/name> Ashok Agrawala . ?person <http://owl.mindswap.org/2003/ont/owlweb.rdf

#mindswapHomepage> ?homepage . }
1 SELECT ?p ?o WHERE { <http://activerdf.org/bnode#genid56> ?p ?o . }
2 SELECT ?p WHERE { <http://activerdf.org/bnode#genid56> ?p ?o . }
3 SELECT ?s ?p ?o WHERE { ?s ?p ?o . }
4 SELECT ?s ?p WHERE { ?s ?p ?o . }
5 SELECT ?s WHERE { ?s ?p ?o . }
6 SELECT DISTINCT ?p WHERE { <http://activerdf.org/bnode#genid56> ?p ?o . }
7 SELECT DISTINCT ?p WHERE { ?s ?p ?o . }
8 SELECT ?s WHERE { ?s <http://www.w3.org/1999/02/22−rdf−syntax−ns#type> <http://xmlns.com/foaf/0.1/Person> . }� �

Figure 2: Evaluation queries

relatively few lines of codes needed for the applications pre-
sented in section 5.

For quantitative evaluation, we compared query execution
on Sesame (using various queries and various datasets) using
the curl HTTP client (which shows the time needed by the
data store for query answering), the Sesame Java API and
ActiveRDF. We evaluated nine queries (ranging from select-
ing all triples to joins over two resources, see Fig. 2) using
five different datasets (ranging from 2500–50.000 triples).
Each test was first run to warm-boot the server and then
repeated ten times. The tests were run on a server with two
1994MHz AMD Opteron 246 processors and 2Gb RAM.

 1

 10

 100

 1000

 10000

 100000

 0 1 2 3 4 5 6 7 8

A
ve

ra
ge

 ti
m

e
(m

s)

Query

Sesame HTTP
Sesame Java

Sesame ActiveRDF XML

Figure 3: Querying Sesame in ActiveRDF

Fig. 3 shows the average response time (including result
parsing in Java and ActiveRDF) of each query using curl,
Java, and ActiveRDF in a logarithmic scale. It can be seen
that for most queries ActiveRDF adds only little overhead.
On some queries ActiveRDF seems to perform faster than
using curl HTTP, which is probably due to random hard-
ware variations and measurement difficulties in those small
response time ranges.

For queries #3, #4 and #5 however the overhead of Ac-
tiveRDF is substantial. Because these queries return large
amounts of XML results, we suspected the performance to
be influenced by the Ruby XML parser. Fig. 4 therefore
shows the average response time for same queries but with
the JSON result format instead of XML: indeed the response
time is on average halved for queries #3 (from ±30s to
±15s), #4 (from 20s to 12s) and #5 (from 13s to 7s); note
that the graphs are in logarithmic scale.

 1

 10

 100

 1000

 10000

 100000

 0 1 2 3 4 5 6 7 8

A
ve

ra
ge

 ti
m

e
(m

s)

Query

Sesame HTTP
Sesame Java

Sesame ActiveRDF JSON

Figure 4: Querying Sesame ActiveRDF using JSON

7. RELATED WORK
Many RDF APIs exist currently7 (in various programming

languages). Some provide access to one specific RDF store,
such as the Jena API [17] or the Sesame API [6], and some
are agnostic to the underlying data store, such as RDF2Go8.
Most of these APIs are generic and triple-based, offering
methods such as getStatement and getObject. These are
exactly the APIs that we want to abstract from.

The development of an object-oriented API has been at-
tempted in Java in RdfReactor9, Elmo10 and Jastor11. These
approaches ignore the flexible and semi-structured nature of
RDF data and instead: (i) assume the existence of a schema,
because they rely on the RDF Schema to generate corre-
sponding classes, (ii) assume the stability of the schema,
because they require manual regeneration and recompila-
tion if the schema changes and (iii) assume the conformance
of RDF data to such a schema, because they do not allow
objects with different structure than their class definition.

8. CONCLUSION
We have presented ActiveRDF, an object-oriented library

for RDF data written in Ruby. We have analysed why the
techniques used in traditional object-relational mapping ap-
proaches are not sufficient for the Semantic Web and RDF in

7http://www.wiwiss.fu-berlin.de/suhl/bizer/
toolkits
8http://rdf2go.ontoware.org
9http://rdfreactor.ontoware.org/

10http://www.openrdf.org/doc/elmo/users/index.html
11http://jastor.sourceforge.net/

http://www.wiwiss.fu-berlin.de/suhl/bizer/toolkits
http://www.wiwiss.fu-berlin.de/suhl/bizer/toolkits
http://rdf2go.ontoware.org
http://rdfreactor.ontoware.org/
http://www.openrdf.org/doc/elmo/users/index.html
http://jastor.sourceforge.net/

particular. Based on a careful examination we have chosen
to implement ActiveRDF in an object-oriented scripting lan-
guages. Among the advantages of these languages is the dy-
namic typing of objects, which maps well onto the RDF(S)
class membership, meta-programming, which allows us to
implement the multi-inheritance of RDF(S), and a relax-
ation of strict object conformance to class definitions.

ActiveRDF is light-weight and implemented in around
600 lines of code. It can be used with generic SPARQL
endpoints, on popular RDF data stores, and with desktop
application data. We have designed ActiveRDF such that
it can serve as a data layer in Ruby on Rails, replacing or
augmenting the default ActiveRecord layer, and providing
a solution for rapid development of Semantic Web applica-
tions.

We have shown that ActiveRDF adds only little perfor-
mance overhead, which can probably be decreased by care-
fully considering the parsing implementation. With its higher
abstraction level and integration with Ruby on Rails, Ac-
tiveRDF allows the development of Semantic Web applica-
tions in relatively few lines of code.

Acknowledgements
The work presented in this paper was supported by the Sci-
ence Foundation Ireland under Grants No. SFI/02/CE1/-
I131 and SFI/04/BR/CS0694. We thank Benjamin Heit-
mann for his help in development and documentation, and
the reviewers for their helpful feedback and suggestions.

9. REFERENCES

[1] D. J. Armstrong. The quarks of object-oriented
development. Communications of the ACM,
49(2):123–128, 2006.

[2] C. Bauer and G. King. Hibernate in Action. Manning
Publications, 2004.

[3] D. Beckett. The design and implementation of the
Redland RDF application framework. Computer
Networks, 39(5):577–588, 2002.

[4] T. Berners-Lee. Weaving the Web – The Past, Present
and Future of the World Wide Web by its Inventor.
Texere, 2000.

[5] C. Bizer and R. Cyganiak. D2R server – publishing
relational databases on the Semantic Web (poster). In
Proceedings of the International Semantic Web
Conference (ISWC). 2003.

[6] J. Broekstra, A. Kampman, and F. van Harmelen.
Sesame: A generic architecture for storing and
querying RDF and RDF Schema. In Proceedings of the
International Semantic Web Conference (ISWC), pp.
54–68. 2002.

[7] X. Dong, A. Halevy, and J. Madhavan. Reference
reconciliation in complex information spaces. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 85–96. 2005.

[8] M. Fowler. Patterns of Enterprise Application
Architecture. Addison-Wesley, 2002.

[9] A. Harth and S. Decker. Optimized index structures
for querying RDF from the web. In Proceedings of the
Latin-American Web Congress (LA-Web). 2005.

[10] A. Kalyanpur, D. Pastor, S. Battle, and J. Padget.
Automatic mapping of OWL ontologies into Java. In
Proceedings of the International Conference on
Software Engineering & Knowledge Engineering
(SEKE). 2004.

[11] E. Oren and R. Delbru. ActiveRDF: Object-oriented
RDF in Ruby. In Proceedings of the ESWC Workshop
on Scripting for the Semantic Web. Jun. 2006.

[12] E. Oren, R. Delbru, and S. Decker. Extending faceted
navigation for RDF data. In Proceedings of the
International Semantic Web Conference (ISWC). Nov.
2006.

[13] J. K. Ousterhout. Scripting: Higher-level
programming for the 21st century. IEEE Computer,
31(3):23–30, 1998.

[14] L. Sauermann et al. Semantic desktop 2.0: The
Gnowsis experience. In Proceedings of the
International Semantic Web Conference (ISWC), pp.
887–900. 2006.

[15] D. Schwabe, D. Brauner, D. A. Nunes, and
G. Mamede. HyperSD: a semantic desktop as a
semantic web application. In Proceedings of the ISWC
Workshop on the Semantic Desktop. 2005.

[16] D. Vrandečić. Deep integration of scripting language
and semantic web technologies. In Proceedings of the
ESWC Workshop on Scripting for the Semantic Web.
2005.

[17] K. Wilkinson, C. Sayers, H. A. Kuno, and
D. Reynolds. Efficient RDF storage and retrieval in
Jena2. In Proceedings of the International Workshop
on Semantic Web and Databases (SWDB). 2003.

	Introduction
	Problem statement
	Object--oriented versus RDF
	Existing approaches

	Solution
	Suitability of scripting languages
	Architecture
	Object manager
	Query engine
	Federation manager
	Adapters

	Implementation
	Object manager
	Mapping resources
	Manipulating resources
	Searching resources

	Query Engine
	Federation Manager
	Adapters

	Semantic Web on Rails
	Semantic Conference Schedule
	Faceted Metadata Browser

	Evaluation
	Related Work
	Conclusion
	REFERENCES -9pt

